SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
نویسندگان
چکیده
In this work we introduce a new optimisation method called SAGA in the spirit of SAG, SDCA, MISO and SVRG, a set of recently proposed incremental gradient algorithms with fast linear convergence rates. SAGA improves on the theory behind SAG and SVRG, with better theoretical convergence rates, and has support for composite objectives where a proximal operator is used on the regulariser. Unlike SDCA, SAGA supports non-strongly convex problems directly, and is adaptive to any inherent strong convexity of the problem. We give experimental results showing the effectiveness of our method.
منابع مشابه
UniVR: A Universal Variance Reduction Framework for Proximal Stochastic Gradient Method
We revisit an important class of composite stochastic minimization problems that often arises from empirical risk minimization settings, such as Lasso, Ridge Regression, and Logistic Regression. We present a new algorithm UniVR based on stochastic gradient descent with variance reduction. Our algorithm supports non-strongly convex objectives directly, and outperforms all of the state-of-the-art...
متن کاملVariance-Reduced Proximal Stochastic Gradient Descent for Non-convex Composite optimization
Here we study non-convex composite optimization: first, a finite-sum of smooth but non-convex functions, and second, a general function that admits a simple proximal mapping. Most research on stochastic methods for composite optimization assumes convexity or strong convexity of each function. In this paper, we extend this problem into the non-convex setting using variance reduction techniques, ...
متن کاملFast Incremental Method for Nonconvex Optimization
We analyze a fast incremental aggregated gradient method for optimizing nonconvex problems of the form minx ∑ i fi(x). Specifically, we analyze the Saga algorithm within an Incremental First-order Oracle framework, and show that it converges to a stationary point provably faster than both gradient descent and stochastic gradient descent. We also discuss a Polyak’s special class of nonconvex pro...
متن کاملBreaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization
Due to their simplicity and excellent performance, parallel asynchronous variants of stochastic gradient descent have become popular methods to solve a wide range of large-scale optimization problems on multi-core architectures. Yet, despite their practical success, support for nonsmooth objectives is still lacking, making them unsuitable for many problems of interest in machine learning, such ...
متن کاملNew Optimisation Methods for Machine Learning
In this work we introduce several new optimisation methods for problems in machine learning. Our algorithms broadly fall into two categories: optimisation of finite sums and of graph structured objectives. The finite sum problem is simply the minimisation of objective functions that are naturally expressed as a summation over a large number of terms, where each term has a similar or identical w...
متن کامل